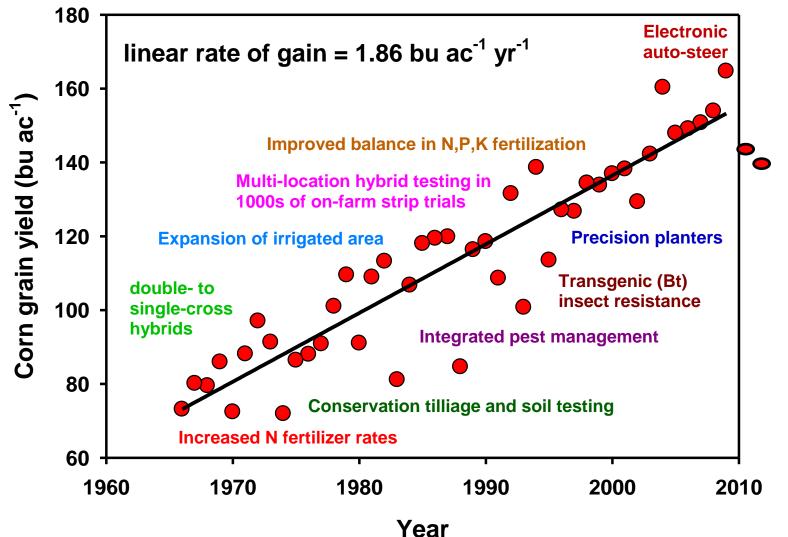
Fertility Management In Modern High Yielding Production Systems


Dale F. Leikam

Dale.Leikam@sbcglobal.net

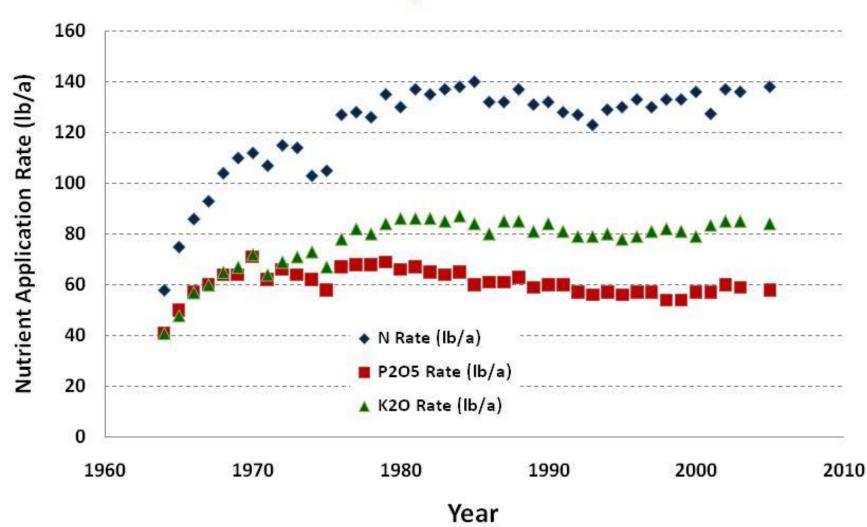
785-770-0009

THE GLOBAL AGRICULTURAL PRODUCTIVITY (GAP) INDEX™


2015 GAP Report®

Total Factor Productivity

USA Corn Yield Trends, 1966-2009


(and supporting science and technologies)

Modified from: Cassman et al. 2006. Convergence of energy and Agriculture. Council on Agriculture, Sci. Tech. Commentary QTA 2006-3. Ames, Iowa

Leikam

AgroMax

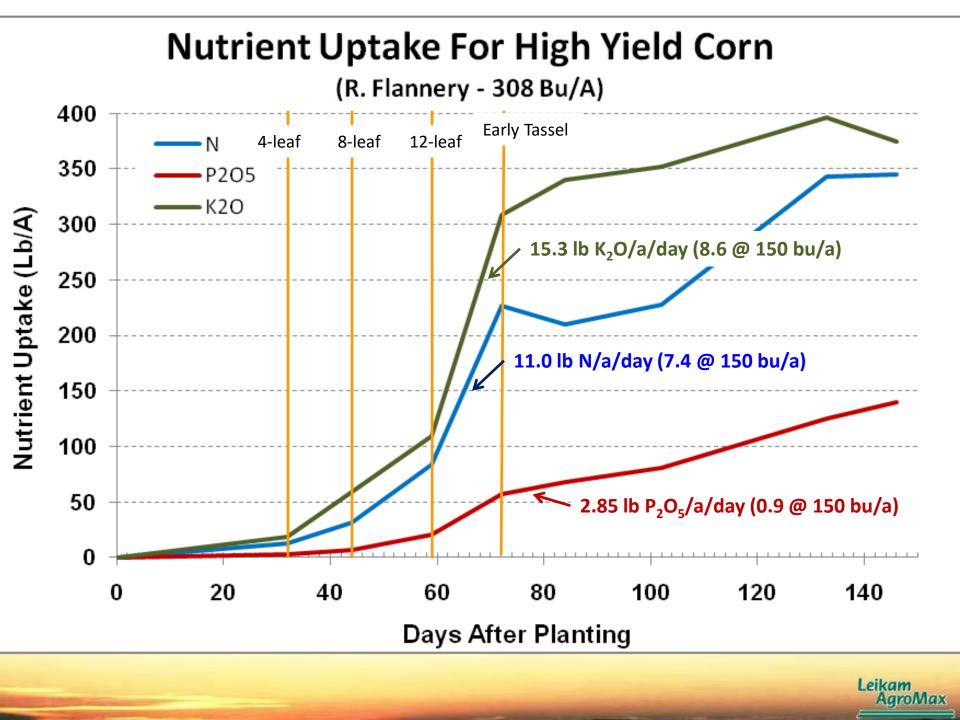
Fertilizer N, P and K Application Rates For Corn Average For U.S.

Leikam AgroMax

U.S. Corn Yield and Nutrient Applications - Three Year Averages 1983-85 vs. 2003-05

		Nutrient Application Rates			Rates per Bushel		
Years	U.S. Corn Yield	Ν	P_2O_5	K₂O	Ν	P_2O_5	K ₂ O
	Bu/A		Lbs / A			Lbs/Bu -	
1983-85	101.9	138	63	85	1.36	0.62	0.84
2003-05	150.1	137	59	83	0.91	0.39	0.55

Sources: Compiled from ERS, TVA, AAPFCO, TFI data.


Corn Nutrient Uptake by Stage of Growth

Days after	Growth	N	<u>P</u>	K
Planting	Stage		bs/A/day	<u> </u>
30	4"	1.5	0.15	1.3
40	waist high	6.0	0.60	7.4
50	ear develop.	7.4	0.90	8.6
60	silking	4.7	0.80	3.3
70	pollination	1.9	0.47	0.5
100	black layer	2.0	0.23	0.4

Mengel and Barber, Purdue University

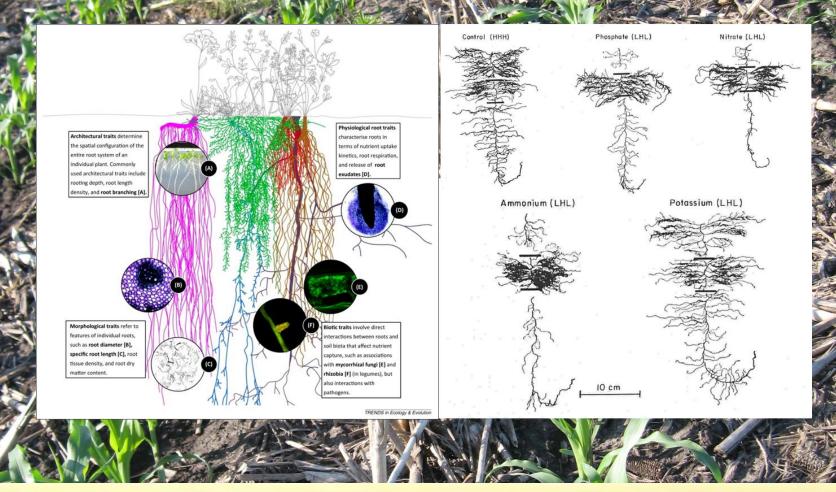
~ 150 bu/a

Keep The Longer Term In Mind

Median soil test K levels in 2010 (IPNI) from 2005 to 2010 (IPNI) BC BC AB MB AB MB SK SK ON QC ON QC 173 -28 236 -18 WA 217 WA $+10^{\circ}$ 106 289 +82* ND [™]274 ND –™15 236 -29 OR OR MN MN 177 -15 ID ID SD SD 160 259 247 +4 $+77^{*}$ 133 wy WY IA 3 ^{NE} 320 161 3 148 -11 он 145 ^{NE}-44 IN NV IN NV co 179 CO CA UT CA υτ 30 320 MO мо ر 86 KS 26 274 ^{к5}-20 144 195 +23 -6 NC120 AZ TN NC_14 AZ TN ¥**108** AR AR NM 151 \$c 65 NM 288 +42114 AL GA -6 MS AL GA MS 46 95 60 13 ΤХ тх -3 +/ 218 North America FI. ыà North America 46 150 ppm -4 ppm 4.3 million samples

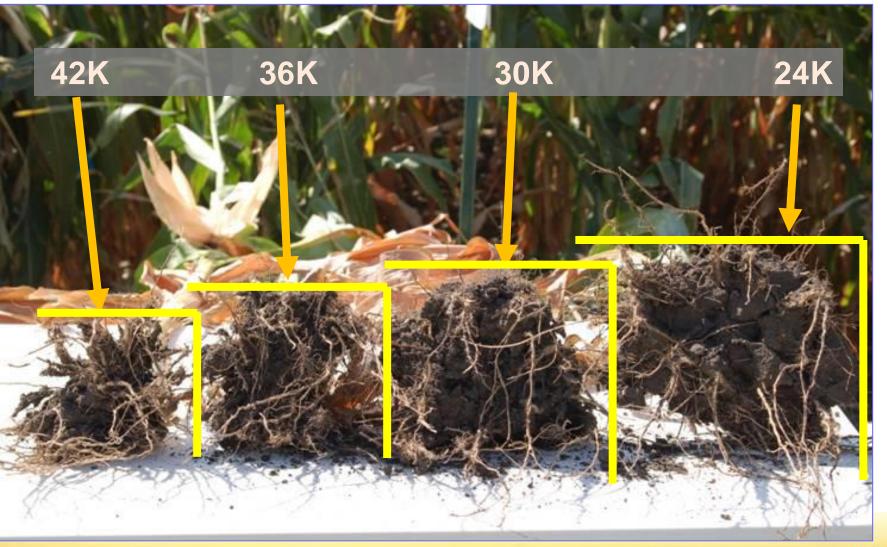
Exchangeable K

Change in median soil test K levels


Nutrient Utilization

ppm Soil Test Values vs. Annual Crop Removal vs.

Nutrient Demand per Day



ROOTS

Higher Yields & High Population: Impact on Root Mass & Nutrient Uptake?

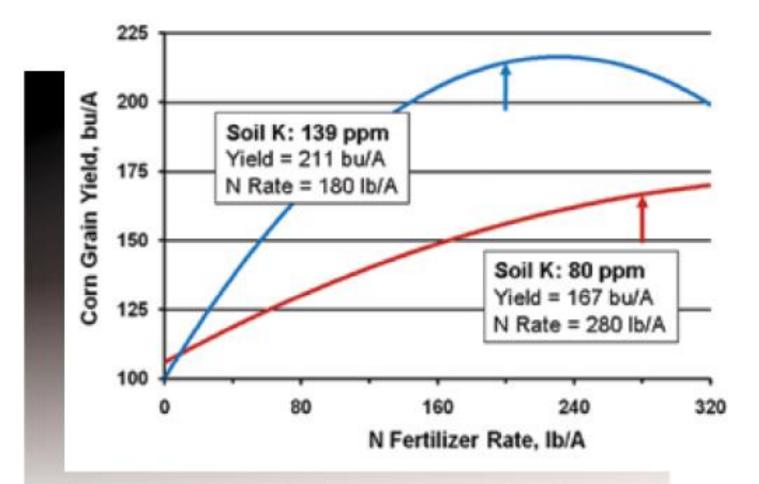


Fig. 1. High yields of corn are obtained with less N when other nutrients, such as K, are present in adequate concentrations (Ohio). Balanced nutrition is key to improving yields and minimizing N fertilizer loss. Source: Murrell and Munson. 1999. Better Crops 83(3):28-31.

Leikam

AgroMax

Effect Of Bray P Soil Test Level On Corn Yield and Response To P Fertilization. (Gyles Randall, Univ. of Minnesota)

	-	Low P
Application Method	P Rate ¹	Soil
	$LbsP_2O_5/A$	
None	0	148.0
Pop-Up	25/20	158.1
Deep Band	25/20	157.7
Broadcast	25/20	166.4
D. Band + Pop-Up	25/20 + 25/20	171.5
Pop-Up	50/40	165.7
Deep Band	50/40	166.0
Broadcast	50/40	167.0
	p > f	< 0.001
	LSD _(0.05)	10.5
	Average	162.6
Bray	y P1 Soil Test	6-9 ppm

¹ Rates are for Low Test Site/High Test Sites

Effect Of Bray P Soil Test Level On Corn Yield and Response To P Fertilization. (Gyles Randall, Univ. of Minnesota)

		High P
Application Method	P Rate ¹	Soil
	$LbsP_2O_5/A$	
None	0	192.8
Pop-Up	25/20	191.6
Deep Band	25/20	196.4
Broadcast	25/20	196.2
D. Band + Pop-Up	25/20 + 25/20	189.0
Pop-Up	50/40	194.5
Deep Band	50/40	186.4
Broadcast	50/40	190.2
		0.04
	p > f	0.84
	LSD (0.05)	NS
	Average	192.1
Bra	y P1 Soil Test	20-27 ppm

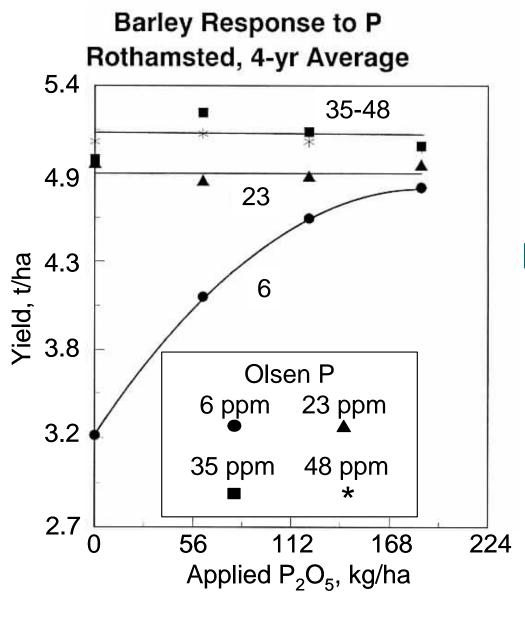
¹ Rates are for Low Test Site/High Test Sites

Effect Of Bray P Soil Test Level On Corn Yield and Response To P Fertilization. (Gyles Randall, Univ. of Minnesota)

		3-year Average Corn Yield			
	_	Low P	High P		
Application Method	P Rate ¹	Soil	Soil	High P Adv	vantage
	$LbsP_2O_5/A$	Bi	u/A	Bu/A	%
None	0	148.0	192.8	44.8	30.3
Pop-Up	25/20	158.1	191.6	33.5	21.2
Deep Band	25/20	157.7	196.4	38.7	24.5
Broadcast	25/20	166.4	196.2	29.8	17.9
D. Band + Pop-Up	25/20 + 25/20	171.5	189.0	17.5	10.2
Pop-Up	50/40	165.7	194.5	28.8	17.4
Deep Band	50/40	166.0	186.4	20.4	12.3
Broadcast	50/40	167.0	190.2	23.2	13.9
	p > f	< 0.001	0.84		
	LSD _(0.05)	10.5	NS		
	Average	162.6	192.1	29.6	18.2
Bra	y P1 Soil Test	6-9 ppm	20-27 ppm		

eikam

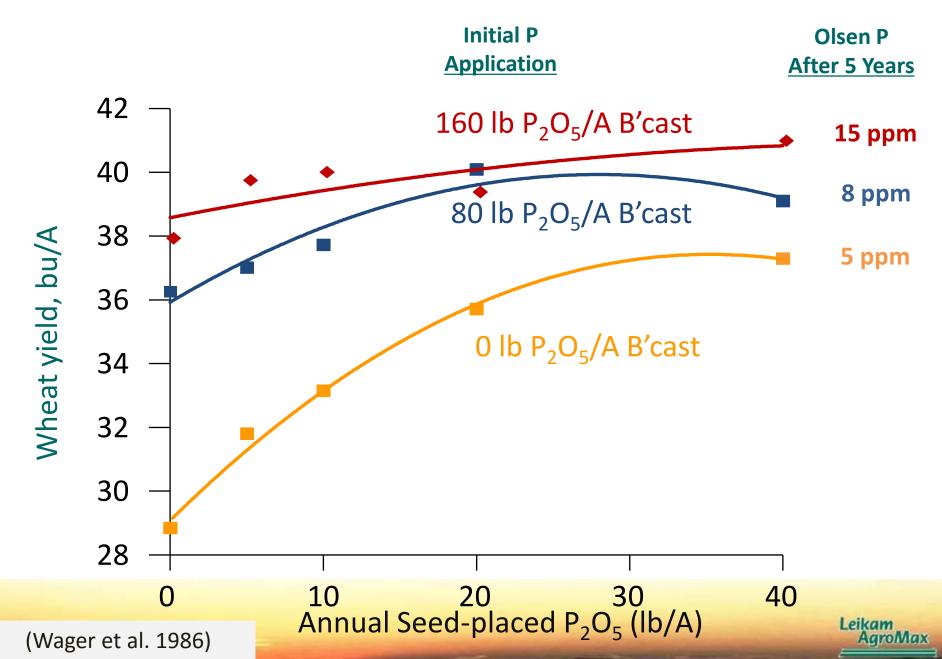
AgroMax


¹ Rates are for Low Test Site/High Test Sites

Effect Of Bray P Soil Test Level On Soybean Yield and Response To Residual P Fertilization. (Gyles Randall, Univ. of Minnesota)

		3-year Average Soybean Yield			
	Residual	Low P	High P		
Application Method	P Rate ¹	Soil	Soil	High P Ad	vantage
		Bi	ı/A	Bu/A	%
None	0	34.5	49.1	14.6	42.3
Pop-Up	25/20	36.4	49.1	12.7	34.9
Deep Band	25/20	34.7	48.8	14.1	40.6
Broadcast	25/20	36.7	50.3	13.6	37.1
D. Band + Pop-Up	25/20 + 25/20	40.8	49.3	8.5	20.8
Pop-Up	50/40	38.2	48.9	10.7	28.0
Deep Band	50/40	38.5	49.1	10.6	27.5
Broadcast	50/40	37.1	48.4	11.3	30.5
	p > f	0.39	0.01		
	LSD _(0.05)	NS	3.5		
	Average	37.1	49.1	12.0	32.4
Bra	y P1 Soil Test	6-9 ppm	20-27 ppm		

¹ Residual Rates are for Previous Corn Crop Low Test Site/High Test Sites



"On impoverished soils (<10 ppm P) even the largest fresh applications of broadcast P did not raise yields to those achieved on enriched soils (>25 ppm P) in the absence of fresh phosphate."

A.E. Johnston, 1986

Will Fertilizer Substitute For Higher Fertility?

Keep The Longer Term In Mind

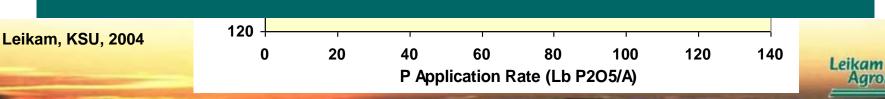
Median soil test P levels in 2010 (IPNI) from 2005 to 2010 (IPNI) BC BC AB AB МВ MB SK SK 30 58 ON ON QC +321 QC +414 21 WA WA +437 47 -5 0 [™]14 ND ND [™]0 0 11 OR OR MN MN 56 +1ID SD SD 18 26 13 +140 NY wγ wγ IA [™]22 3 3 -6 NE 63 -3 18 IN OH 96 NV NV со 24 со CA 26 26 UT CA UT мо 19 мо 11 22 KS -7 ^{к5} - 3 18 16 18 59 -2 -2 0 NC -105 NC 93 AZ TN AZ 18 AR NM 21 AR NM 20 ^{\$63} -5 SC 23 AL GA MS +6AL GA MS 23 ₃₅ 51 ppm +3ppm ΤХ ΤХ 17 North America -1 LACT North America 64 25 ppm -6 ppm 4.4 million samples

Extractable P

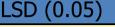
Change in median soil test P levels

We 'Know' That Fertilizer **Applications (rates and method) Should Be As Efficient As Possible In The Year Of Application ?**

, R, En Application Rate



We 'Know' That Potassium Has To Be Placed Where We Want It In The Root Zone Since It Does Not Move In Soil ?

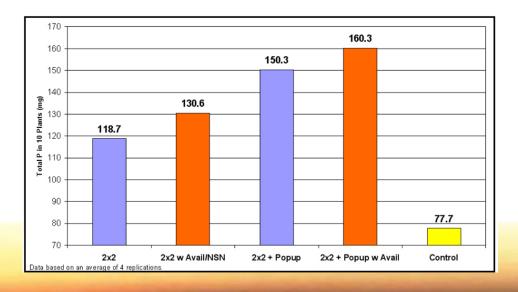

Leikam, KSU, 2004

We 'Know' That Phosphorus Has To Be Placed Where We Want It, In The Root Zone Since It Does Not Move In Soil ?

We 'Know' That Starter Fertilizer Has To Be Placed Where We Want It In The Root Zone - With Or Below The Seed?

6

Lamond, KSU Manhattan Soil Test P = Medium-High



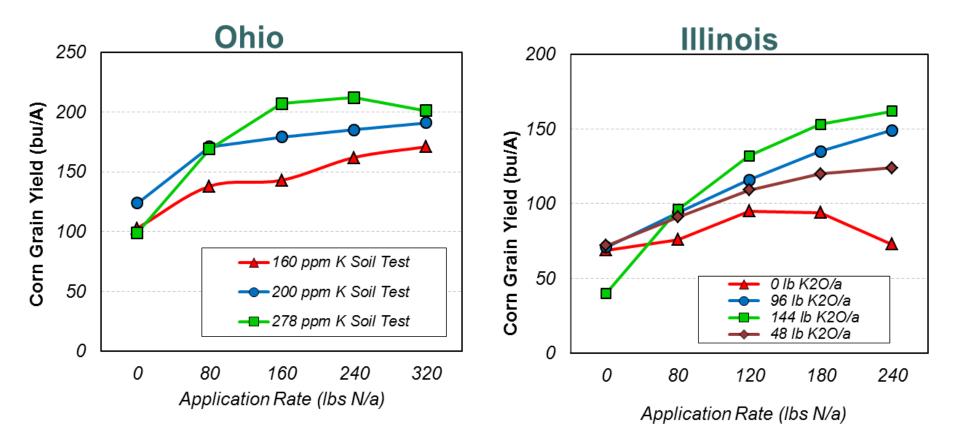
In-furrow and 2x2 Starter Combinations For Corn

M. Bauer, Michigan

Starter	Additive	Plant	Grain	-	Tissue
Method		Vigor		Ν	Р
			bu/a		%
None	None	7.0	197.8	3.46	0.33
2 x 2	None	8.0	204.5	3.60	0.38
2 x 2	Avail + Nutrisphere-N	8.5	211.4	3.66	0.37
In-furrow	Season Pass	8.0	203.2	3.54	0.38
n-furrow <u>plus</u> 2 x 2	Season Pass	8.5	213.4	3.71	0.38
	p > f	<0.001	<0.001	<0.001	<0.001
	LSD _(0.10)	0.5	2.7	0.03	0.01

Leikam AgroMax

We 'Know' That Zn Oxide **Fertilizer Products Are Not Appropriate In The Plains Because Their Solubility is Too** Low?


Effect od Seed Zn on Growth of Wheat in Central Anatolia

11 mg Zn kg⁻¹ 30 mg Zn kg⁻¹

: Ekiz et al., 1998, J. Plant Nutr.

Interactions

Interaction Of New Technologies/Practices With Corn Yield F. Below, University of Illinois

	Traditional Program	Enhanced Program	
	208 bu/a	274 bu/a	
Yield In	dividual New Practice:		
	k	ou/a	
Additional P, S, Zn (MEZ)	7	18	
Additional Sidedress N	16	24	
Higher Plant Population	-15	14	
Fungicide Application	-4	12	
Genetics - Triple Stack	8	27	

Traditional Program - University of Illinois Recommendations Without Any Enhanced Input Enhanced Program - University of Illinois Recommendations Plus All Enhanced Inputs

eikam

aroMax

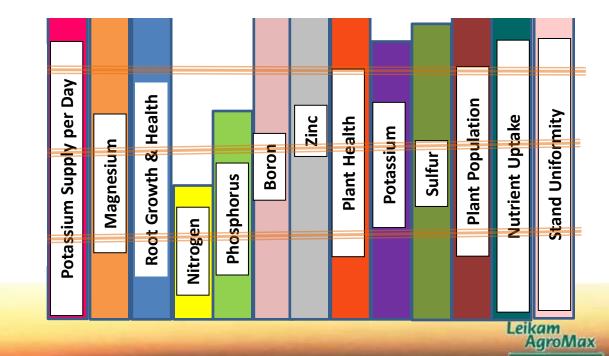
Higher Nutrient Levels Required For Plant Population Response Kansas State University


Plant	Traditional ¹	Enhanced ²	Corn
Population	Fertility	Fertility	Response
28,000	202	225	23
42,000	196	262	66
Response	-6	37	

¹ 230 lb N/a, 30 lb P_2O_5/a

P and K Soil Tests = High

 2 230 lb N/a, 100 lb P_2O_5/a , 80 lb K_2O/a and 40 lb S/a



The wooden bucket represents the soil's nutrient supplying capacity

The Law of the Minimum

Law of The Minimum

Continuing To Move Yields On Up

- Fresh Mindset & Attitudes Vatren
- Recalibrate Thinking (it's not 1985 anymore)
- Be Open To New Ideas/Products (open minded)
- Think For Yourself Interpretation (assumptions and bias)

kam AaroMax

- Nutrient Utilization vs. 'Availability'
- Think Crop Nutrition Not Just 'Soil' Fertility
- Don't Forget The 'Small' Things

"All truth passes through three stages:

First, it is ridiculed. Second, it is violently opposed. Third, it is accepted as being self-evident."

Arthur Schopenhauer

Dale.Leikam@sbcglobal.net 785-770-0009

